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Measuring segregation of inertial particles in turbulence by a full Lagrangian approach
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Preferential concentration of inertial particles in turbulence is studied numerically by evaluating the La-
grangian compressibility of the particle velocity field using the “full Lagrangian method.” This is compared
with the “mesoscopic Eulerian particle velocity field” both in a direct numerical simulation of turbulence and
in a synthetic flow field. We demonstrate that the Lagrangian method, in contrast to the Eulerian, accurately
predicts the compressibility of the particle velocity field even when the latter is characterized by singularities.
In particular we use the method to evaluate the growth rates of spatial moments of the particle number density
which reflect the fractal structure of segregation and the occurrence of singularities.
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Suspensions of small heavy particles in turbulent flows
are found in a variety of processes such as droplets in clouds
[1], soot particles in postcombustion devices, and reacting
particles in chemical process facilities [2]. It is well known
from experiments [3], numerical simulations [4,5], and the-
oretical studies [1,6] that particles in turbulent flows tend to
concentrate preferentially due to their inertia. While being
influential in many of these natural and industrial processes,
this “demixing” is of fundamental interest in statistical phys-
ics, since it is associated with the behavior of a nonlinear
system far from equilibrium, combining the properties of ki-
netics and hydrodynamics with caustics superimposed on
multifractal structures [5,7,8].

Inertial particles are generally ejected from regions of
high vorticity and accumulate in regions of high strain rate,
thereby inducing nonzero gradients in the particle number
density, n(x,1), i.e., the number of particles situated inside an
infinitesimally small volume located at position x at time ¢.
Preferential concentration is associated with a nonzero com-
pressibility of the particle velocity field v(x,7) which is de-
fined as the mean velocity of particles at a certain position x
at time 7. Indeed, it is well known [9-11] that the particle
velocity field may be compressible even if the turbulent car-
rier flow is incompressible. Local gradients of n(x,f) and
v(x,7) control the rates of interparticle collisions, coales-
cence, breakup, and possibly sedimentation and resuspen-
sion.

One possibility of measuring the local concentration of
discrete particles and the particle velocity field is to use “box
counting” (see, e.g., [12]). This method is as intuitive as it is
complicated, its complication being caused by the large num-
ber of particles required to determine steep concentration
gradients; in particular, there may be regions devoid of par-
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ticles close to regions of particle accumulation. In the present
study we propose an alternative method to quantify the com-
pressibility of the particle velocity field, namely, the “full
Lagrangian method” (FLM) [13-15] and compare it to the
“mesoscopic Eulerian formalism” (MEF) [11,16], which is
essentially a box counting method. We show that the FLM
can be used to predict local concentration gradients at small
scales in a more accurate and computationally cheaper way
than the MEF. The potential of the FLM is illustrated in a
simple two-dimensional synthetic turbulent flow field and we
benchmark the two methods in a direct numerical simulation
(DNS) of turbulence. Finally, we demonstrate that the FLM
can be used to determine any spatially averaged moment of
the particle number density.

In this work, we study the dispersion of identical, rigid,
and spherical particles in a carrier flow of mass density p and
kinematic viscosity v. Particles are assumed to be heavy (i.e.,
p,/ p>1 where p, is the particle density) with radii a, much
smaller than the smallest length scale of the flow. Upon ne-
glecting gravity and Brownian effects, the equations of mo-
tion are [17]

=v, —=—(u-v), (1)

where x,, and v are the position and velocity of the particle,
respectively, and u=u(x,,7) denotes the velocity of the car-
rier flow at the position of the particle. All variables have
been made dimensionless by a typical time scale 7 and a
typical velocity scale Y. The parameter St:2p,,a]2,/ (9pv7) is
the Stokes number, which represents the ratio between the
inertia driving the particle and the viscous damping action of
the fluid.

Février et al. [16] have proven that the velocity of par-
ticles dispersed in turbulent flows can be seen as the sum of
two contributions: a continuous turbulent velocity field
shared by all particles called the mesoscopic Eulerian par-
ticle velocity field (MEPVF) and denoted by v, and a random
velocity component we refer to as random uncorrelated mo-
tion (RUM) [14] (alternatively called “sling effect” [1] or
“crossing trajectories effect” [18]). The latter component is
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dominant in the case of large inertia, thus leading to a bal-
listic particle motion and negligible in the case of infinitesi-
mally small particles. In a continuum approach in which the
spatial derivatives of nv are finite, the particle number den-
sity n(x,1) evolves by [6] dn+V-(nv)=0. In regions devoid
of particles v is formally undefined, but the number density
is zero there and consequently nv=0 as well. Along the tra-
jectory of a particle which moves with velocity v, we have

dn

7 =-n(V-v), (2)

where V-V denotes the compressibility of the particle veloc-
ity field. If the initial number density is uniform and normal-
ized so that n(x,0)=1, Eq. (2) can easily be integrated in
order to obtain [6] n=exp[[(V-V)dt']. It is clear that the
number density along the trajectory of a particle is directly
related to the compressibility. For sufficiently small Stokes
numbers, Vv=u-Stu-Vu+O(St?) [6,9,10,19], and conse-
quently in an incompressible flow,

V.-v=-S5tV - (u-Vu)=-StQ, (3)

where Q denotes the Okubo-Weiss parameter [20,21]. For
finite Stokes numbers however an analytical expression for
V-¥V is not available and it needs to be determined numeri-
cally.

The MEF approach provides a way to calculate V-v
[11,16] based upon a division of the calculation domain into
grid cells. Averaging the velocities of all the particles inside
a cell gives v defined in the center of a cell. By taking the
spatial derivatives using a finite difference method, one can
obtain V-V at each cell center.

As an alternative method to calculate V-v we employ the
FLM. We consider the fractional volume of particles sur-
rounding the particle and follow its evolution as the particle
moves through the turbulent carrier flow. Upon defining a
unit deformation tensor as J;;= dx, (Xy,)/ dx, ;, we can dif-
ferentiate Eq. (1) with respect to X, in order to obtain
[13-15]

dl.; . d. 1 Ju: .
—[‘L: A.,—J..:— —Lt .. . 4
dt T ar St( M ox, ’-’) (4)

The initial conditions are chosen as J;;(0)=4;; and Jij(O)
=du,(xy,0)/dx;. Along a particle trajectory |J|=|det(J;)]
=n"!, so that using Eq. (2) and averaging over all particle

trajectories gives a relation between J and V-v [22]:
% i) = (v %) s
—(In|J]) =(V - V).
dt

Equation (4) may result in J becoming equal to zero, which
is equivalent to a singularity in the particle velocity field
(V-v=—»). Therefore the FLM is able to detect singularities
in the spatial distribution of particles, in contrast to the MEF
which is ultimately based on a difference equation. A method
similar to the FLM was proposed by Falkovich and Pumir
[23], first for infinitesimally small St and subsequently for
any St [24], who used a nonlinear equation for the time evo-
Iution of the deformation tensor. Although their method is
well suited for detecting singularities in the particle velocity
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FIG. 1. (Color online) Compressibility of the particle velocity
field (V-V) in the synthetic flow (A=, w=1) as a function of time,
measured by the FLM (d(In|J|)/dt; red solid line), and by the MEF
(MEPVF,; blue dashed line). Maxey’s estimate, Eq. (3), is plotted as
well (green dash-dotted line). (a) St=0.05, (b) St=0.2, (c) St=0.5,
and (d) St=2.

field—and thus for the determination of collision rates—its
main disadvantage is that the calculation necessarily finishes
once a singularity has been encountered [15]. It is therefore
not ideally suited for the long-time calculations of the com-
pressibility, which is the main objective of the present study.

We compare the FLM and the MEF in a simple two-
dimensional synthetic flow field. The time-dependent stream
function V¥ is [25]

W(x,y,t) = cos[x + A sin(wt)]cos y, 6)

and the velocity field follows from u=(d¥/dy,—dW¥/dx).
Particles are injected at random positions x=x,,(0) inside the
periodic domain [0,27]X[0,27] with the same velocity as
the fluid at the corresponding position, v(0)=u(x,,0). Using
Eq. (1), we trace 10° particles to determine the value of
(V-v) with the MEF with 60 grid cells in each direction.
Alternatively we follow 10* particles using Eqgs. (1) and (4)
and determine (V-v) from Eq. (5). We present the results
from both methods in Fig. 1, together with the estimate for
small St, Eq. (3). For a small Stokes number such as St
=0.05 [Fig. 1(a)], the three lines collapse. This is expected,
since Eq. (3) is exact in the limit of infinitely small St. If
St=0.2 [see Fig. 1(b)], there is still an excellent correspon-
dence between the result from the MEF and the FLM. The
value of —St(Q), however, is quite different because the par-
ticles do not precisely follow the oscillations in the flow field
due to their inertia. Therefore the lines for (V-V) are shifted
to the right with respect to the curve —St(Q). The graph for
St=0.5 [Fig. 1(c)] is qualitatively different from the previous
two, as it contains sharp negative peaks in the value of
(V-¥). These intermittent events correspond to a sudden col-
lapse of the volume occupied by the particles so that J~0
and (V-v)— —oo. This phenomenon is due to RUM, i.e., sin-
gularities in the flow field where particle trajectories cross
and J vanishes. The agreement between the MEF and the
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FIG. 2. (Color online) Compressibility of the particle velocity
field (V-V) in the synthetic flow (A=, w=1) as a function of time
for St=0.2, measured by the FLM (d{In|J|}/dt; red solid line), and
by the MEF on three different grid resolutions: 10X 10 grid cells
(thin solid black line), 20X 20 grid cells (dash-dotted green line),
and 60 X 60 grid cells (dashed blue line).

FLM is nonetheless very good, although the peaks tend to be
a bit steeper in the Lagrangian method. If particles are per-
fectly ballistic (St— o), we expect (V-V) to be zero for most
instants of time, interrupted only by intermittent negative
peaks when two particle trajectories cross. This behavior is
exemplified by Fig. 1(d) for St=2.

We can relate the onset of RUM to a specific value of St.
This value can be evaluated by neglecting the flow time de-
pendence and setting A=0 or w=0, thus considering a flow
field made of an array of counter-rotating vortices with hy-
perbolic regions between them. When the inertial particles
move from one vortex to another, they statistically cross the
separatrix of the vortices near the hyperbolic stagnation
points (x;,y,). The stream function containing these points
can be approximated by a Taylor expansion up to third order:
W= =+ (x—x,,)(y—y,). Particles can cross the separatrix only
if St>0.25 [26], when particle inertia is sufficient to over-
come the damping action of the fluid. We also note that the
value St=0.25 is the threshold for which J can become equal
to zero [14]. Indeed, Figs. 1(a) and 1(b) are very smooth
whereas Figs. 1(c) and 1(d) are characterized by intermittent
negative peaks. Our result is very much in agreement with
previous studies [18,24] which show that RUM has an acti-
vation dependence on the Stokes number in real turbulence
consisting of different time and length scales.

The difference between the results from the FLM and the
MEF can be illustrated by a convergence test of the grid cells
in the MEPVEF. Figure 2 depicts a similar result as in Fig.
1(b), but with three different resolutions of the MEPVF. As
the mesh becomes finer, the small-scale fluctuations in the
particle number density are better predicted and the values of
(V-v) are generally lower. The result from the FLM coin-
cides almost perfectly with the solution of the finest mesh in
the MEPVE, thus confirming the consistency of the FLM
approach and illustrating its potential.

Now we investigate the compressibility of the particle ve-
locity field in a DNS of statistically stationary homogeneous
isotropic turbulence. The three-dimensional incompressible
Navier-Stokes equations are solved using a finite volume
method on a staggered grid (1283 cells) in a triply-periodic
cubic domain. The discretization in time is achieved by a

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 80, 015302(R) (2009)

——d<In [J[>/d t
20 -a- MEPVF

LN > o
I3 >

-10 ~

-50
-20
= -100
300 2 4 6 8 10 0 2 4 6

@ ¢ (b) n

FIG. 3. (a) Compressibility of the particle velocity field (V-v)
as a function of time in a DNS of turbulence for particles with St
=1. The solid line denotes the compressibility measured by the
Lagrangian method (d In|J|/df), whereas the dotted line represents
the Eulerian method using the MEPVFE. (b) Instantaneous condi-
tional average (V »V| n), determined from the MEPVF, as a function
of the particle number density in a DNS of turbulence for particles
with St=1. Error bars show the rms of the distribution of V-v.

second-order Runge-Kutta scheme. The Reynolds number
based on the Taylor microscale is Rey=51. To determine the
MEPVF, we consider one fluid flow realization in which we
inject an ensemble of (20 X 10%) particles with St=1, based
on the Kolmogorov time scale. For the FLM, we inject
O(10°) particles with a uniform random distribution into the
turbulent flow at 7=0. All particles are released with the ini-
tial velocity equal to the local fluid velocity. Equations (1)
and (4) are solved for a time span of approximately ten times
the Kolmogorov time scale, and the compressibility of the
particle velocity field is computed from Eq. (5).

Figure 3(a) displays the particle-averaged value of V-V,
as a function of time, for the MEF and the FLM. We observe
that the correspondence between the two methods is good
with the exception of an initial transient. The small differ-
ence is probably due to the influence of RUM whose effects
are included in the quantification of J but not in the MEF.
Apparently, (V-V) approaches a negative constant, both in
the FLM and in the MEF. This indicates that the particle
number density, measured along the particle trajectories, in-
creases continuously.

Figure 3(b) quantifies the joint correlation between the
particle number density and V-V calculated from the ME-
PVF at one instant of time r=10. We observe that a locally
increased particle number density is positively correlated
with a compression of the MEPVF.

Finally, we show how the FLM allows us to determine the
moments of the particle number density averaged over space.
Because n=|J|™! along the trajectory of each particle, the ath
moment of the particle number density averaged over all
particles is (n®y={|J|~%). The particle average of any variable
d, (®), is related to the value spatially averaged over a do-
main Q, O, by (®)=Q'[on®dx=n®. In the present study,
the flows are periodic in space and the number of particles in
the domain remains constant. Hence:

n*=(J"%, VaeR. (7)

Thus, any space-averaged moment of the particle number
density can be obtained from Lagrangian statistics of J.

We determine n® in the synthetic flow using Eq. (7) and
show the result in Fig. 4 for St=0.2 (a) and St=0.5 (b), for
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FIG. 4. (Color online) [(a) and (b)] Spatial average of the mo-
ments of the particle number density n“ as a function of time in the
synthetic two- dimensional flow (A=7,w=1) for St=0.2 (a) and
St=0.5 (b), for six different values of «; the legend is valid for both
graphs. (c) Coefficient y as a function of « for four different Stokes
numbers.

six different values of . The value a=1 is not plotted, since
it is trivially equal to 1; see Eq. (7). If St=0.2, the second,
third, and fourth moments of n increase approximately expo-
nentially with time. Because n=1V¢, the particles are clus-
tered in smaller and smaller areas. The same qualitative be-
havior is visible in Fig. 4(b) for St=0.5, although the
resulting values for n® for a>1 are even higher by several
orders of magnitude. The high intermittent peaks correspond
to events when J=0 and can be attributed to the presence of
RUM in this case where St>0.25.

If St is sufficiently small so that the effect of RUM is
negligible, then we find after a sufficiently long time: n®
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cexp(yr), where vy is a function of St and « alone. We cal-
culate y as a function of a on the basis of the results for
(|J]'=%), for four different St and plot the results in Fig. 4(c).
All graphs pass through the « axis at =0 and a=1 as ex-
pected. For all Stokes numbers considered, y=0 if 0=«
=1, and y>0 otherwise. Figure 4(c) shows that vy is ap-
proximately proportional to St. These results are in perfect
agreement with Balkovsky et al. [6] who predicted theoreti-
cally that vy is convex function of « at a given Stokes num-
ber, i.e., c?z'y/ da?# 0V a. Here, Balkovsky’s theoretical pre-
diction for the number density has actually been confirmed in
a numerical simulation. Our results are also in qualitative
agreement with [27], who investigated experimentally the
spatially coarse-grained moments of the particle number den-
sity and their dependence on the normalized box size. The
reason why we have been able to obtain the high-order mo-
ments n“ is because we calculated the moments of the par-
ticle number density by the FLM instead of by a classical
Eulerian box-counting method which would have had too
limited a spatial resolution to detect clustering on increas-
ingly small scales.

In conclusion, we have explored the possibility of em-
ploying the FLM to determine the compressibility of the par-
ticle velocity field. The agreement with the Eulerian MEF
approach is generally very good suggesting that the FLM can
indeed be used in the quantification of particle clustering in
turbulence. Finally, we have explained how the FLM can be
used to determine any spatially averaged moment of the par-
ticle number density. By doing so, we have unambiguously
demonstrated the existence of singularities in the particle ve-
locity field.
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